Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Funct Biomater ; 14(2)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36826893

RESUMEN

Commercially available titanium alloys such as Ti-6Al-4V are established in clinical use as load-bearing bone implant materials. However, concerns about the toxic effects of vanadium and aluminum have prompted the development of Al- and V-free ß-Ti alloys. Herein, a new alloy composed of non-toxic elements, namely Ti-18Mo-6Nb-5Ta (wt%), has been fabricated by arc melting. The resulting single ß-phase alloy shows improved mechanical properties (Young's modulus and hardness) and similar corrosion behavior in simulated body fluid when compared with commercial Ti-6Al-4V. To increase the cell proliferation capability of the new biomaterial, the surface of Ti-18Mo-6Nb-5Ta was modified by electrodepositing calcium phosphate (CaP) ceramic layers. Coatings with a Ca/P ratio of 1.47 were obtained at pulse current densities, -jc, of 1.8-8.2 mA/cm2, followed by 48 h of NaOH post-treatment. The thickness of the coatings has been measured by scanning electron microscopy from an ion beam cut, resulting in an average thickness of about 5 µm. Finally, cytocompatibility and cell adhesion have been evaluated using the osteosarcoma cell line Saos-2, demonstrating good biocompatibility and enhanced cell proliferation on the CaP-modified Ti-18Mo-6Nb-5Ta material compared with the bare alloy, even outperforming their CaP-modified Ti-6-Al-4V counterparts.

2.
Small ; 14(21): e1704396, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29667302

RESUMEN

Voltage-driven manipulation of magnetism in electrodeposited 200 nm thick nanoporous single-phase solid solution Cu20 Ni80 (at%) alloy films (with sub 10 nm pore size) is accomplished by controlled reduction-oxidation (i.e., redox) processes in a protic solvent, namely 1 m NaOH aqueous solution. Owing to the selectivity of the electrochemical processes, the oxidation of the CuNi film mainly occurs on the Cu counterpart of the solid solution, resulting in a Ni-enriched alloy. As a consequence, the magnetic moment at saturation significantly increases (up to 33% enhancement with respect to the as-prepared sample), while only slight changes in coercivity are observed. Conversely, the reduction process brings Cu back to its metallic state and, remarkably, it becomes alloyed to Ni again. The reported phenomenon is fully reversible, thus allowing for the precise adjustment of the magnetic properties of this system through the sign and amplitude of the applied voltage.

3.
Materials (Basel) ; 11(2)2018 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-29439450

RESUMEN

Open cell foams consisting of Fe and Fe-Mn oxides are prepared from metallic Fe and Mn powder precursors by the replication method using porous polyurethane (PU) templates. First, reticulated PU templates are coated by slurry impregnation. The templates are then thermally removed at 260 °C and the debinded powders are sintered at 1000 °C under N2 atmosphere. The morphology, structure, and magnetic properties are studied by scanning electron microscopy, X-ray diffraction and vibrating sample magnetometry, respectively. The obtained Fe and Fe-Mn oxide foams possess both high surface area and homogeneous open-cell structure. Hematite (α-Fe2O3) foams are obtained from the metallic iron slurry independently of the N2 flow. In contrast, the microstructure of the FeMn-based oxide foams can be tailored by adjusting the N2 flow. While the main phases for a N2 flow rate of 180 L/h are α-Fe2O3 and FeMnO3, the predominant phase for high N2 flow rates (e.g., 650 L/h) is Fe2MnO4. Accordingly, a linear magnetization versus field behavior is observed for the hematite foams, while clear hysteresis loops are obtained for the Fe2MnO4 foams. Actually, the saturation magnetization of the foams containing Mn increases from 5 emu/g to 52 emu/g when the N2 flow rate (i.e., the amount of Fe2MnO4) is increased. The obtained foams are appealing for a wide range of applications, such as electromagnetic absorbers, catalysts supports, thermal and acoustic insulation systems or wirelessly magnetically-guided porous objects in fluids.

4.
Sci Rep ; 6: 30398, 2016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27462025

RESUMEN

Spatio-temporal patterns are ubiquitous in different areas of materials science and biological systems. However, typically the motifs in these types of systems present a random distribution with many possible different structures. Herein, we demonstrate that controlled spatio-temporal patterns, with reproducible spiral-like shapes, can be obtained by electrodeposition of Co-In alloys inside a confined circular geometry (i.e., in disks that are commensurate with the typical size of the spatio-temporal features). These patterns are mainly of compositional nature, i.e., with virtually no topographic features. Interestingly, the local changes in composition lead to a periodic modulation of the physical (electric, magnetic and mechanical) properties. Namely, the Co-rich areas show higher saturation magnetization and electrical conductivity and are mechanically harder than the In-rich ones. Thus, this work reveals that confined electrodeposition of this binary system constitutes an effective procedure to attain template-free magnetic, electric and mechanical surface patterning with specific and reproducible shapes.


Asunto(s)
Aleaciones/química , Cobalto/química , Indio/química , Fenómenos Magnéticos , Periodicidad
5.
J Mater Chem B ; 4(39): 6402-6412, 2016 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-32263449

RESUMEN

Two new Fe-based alloys, Fe-10Mn6Si1Pd and Fe-30Mn6Si1Pd, have been fabricated by arc-melting followed by copper mold suction casting. The Fe-30Mn6Si1Pd alloy mainly consists of ε-martensite and γ-austenite Fe-rich phases whereas the Fe-10Mn6Si1Pd alloy primarily contains the α-Fe(Mn)-ferrite phase. Additionally, Pd-rich precipitates were detected in both alloys. Good mechanical response was observed by nanoindentation: hardness values around 5.6 GPa and 4.2 GPa and reduced Young's moduli of 125 GPa and 93 GPa were measured for the as-prepared Fe-10Mn6Si1Pd and Fe-30Mn6Si1Pd alloys, respectively. Both alloys are thus harder and exhibit lower Young's modulus than 316L stainless steel, which is one of the most common Fe-based reference materials used for biomedical applications. Compared with the ferromagnetic Fe-10Mn6Si1Pd alloy, the paramagnetic Fe-30Mn6Si1Pd alloy is more appropriate to be used as an implant since it would be compatible for nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) analyses. Concerning biocompatibility, the more hydrophilic Fe-10Mn6Si1Pd alloy shows improved cell adhesion but its pronounced ion leaching has a negative effect on the proliferation of cells. The influence of immersion in a simulated body fluid on the composition, microstructure, mechanical and magnetic properties of both alloys is assessed, and the correlation between microstructure evolution and physical properties is discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...